Underwater terrain reconstruction from forward-looking sonar imagery

Jinkun Wang, Tixiao Shan, Brendan Englot

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

32 Scopus citations

Abstract

In this paper, we propose a novel approach for underwater simultaneous localization and mapping using a multibeam imaging sonar for 3D terrain mapping tasks. The high levels of noise and the absence of elevation angle information in sonar images present major challenges for data association and accurate 3D mapping. Instead of repeatedly projecting extracted features into Euclidean space, we apply optical flow within bearing-range images for tracking extracted features. To deal with degenerate cases, such as when tracking is interrupted by noise, we model the subsea terrain as a Gaussian Process random field on a Chow-Liu tree. Terrain factors are incorporated into the factor graph, aimed at smoothing the terrain elevation estimate. We demonstrate the performance of our proposed algorithm in a simulated environment, which shows that terrain factors effectively reduce estimation error. We also show ROV experiments performed in a variable-elevation tank environment, where we are able to construct a descriptive and smooth height estimate of the tank bottom.

Original languageEnglish
Title of host publication2019 International Conference on Robotics and Automation, ICRA 2019
Pages3471-3477
Number of pages7
ISBN (Electronic)9781538660263
DOIs
StatePublished - May 2019
Event2019 International Conference on Robotics and Automation, ICRA 2019 - Montreal, Canada
Duration: 20 May 201924 May 2019

Publication series

NameProceedings - IEEE International Conference on Robotics and Automation
Volume2019-May
ISSN (Print)1050-4729

Conference

Conference2019 International Conference on Robotics and Automation, ICRA 2019
Country/TerritoryCanada
CityMontreal
Period20/05/1924/05/19

Fingerprint

Dive into the research topics of 'Underwater terrain reconstruction from forward-looking sonar imagery'. Together they form a unique fingerprint.

Cite this