Variable baseline/resolution stereo

David Gallup, Jan Michael Frahm, Philippos Mordohai, Marc Pollefeys

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

205 Scopus citations

Abstract

We present a novel multi-baseline, multi-resolution stereo method, which varies the baseline and resolution proportionally to depth to obtain a reconstruction in which the depth error is constant. This is in contrast to traditional stereo, in which the error grows quadratically with depth, which means that the accuracy in the near range far exceeds that of the far range. This accuracy in the near range is unnecessarily high and comes at significant computational cost. It is, however, non-trivial to reduce this without also reducing the accuracy in the far range. Many datasets, such as video captured from a moving camera, allow the baseline to be selected with significant flexibility. By selecting an appropriate baseline and resolution (realized using an image pyramid), our algorithm computes a depthmap which has these properties: 1) the depth accuracy is constant over the reconstructed volume, 2) the computational effort is spread evenly over the volume, 3) the angle of triangulation is held constant w.r.t. depth. Our approach achieves a given target accuracy with minimal computational effort, and is orders of magnitude faster than traditional stereo.

Original languageEnglish
Title of host publication26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
DOIs
StatePublished - 2008
Event26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR - Anchorage, AK, United States
Duration: 23 Jun 200828 Jun 2008

Publication series

Name26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR

Conference

Conference26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
Country/TerritoryUnited States
CityAnchorage, AK
Period23/06/0828/06/08

Fingerprint

Dive into the research topics of 'Variable baseline/resolution stereo'. Together they form a unique fingerprint.

Cite this