Variational filtering with copula models for SLAM

John D. Martin, Kevin Doherty, Caralyn Cyr, Brendan Englot, John Leonard

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations

Abstract

The ability to infer map variables and estimate pose is crucial to the operation of autonomous mobile robots. In most cases the shared dependency between these variables is modeled through a multivariate Gaussian distribution, but there are many situations where that assumption is unrealistic. Our paper shows how it is possible to relax this assumption and perform simultaneous localization and mapping (SLAM) with a larger class of distributions, whose multivariate dependency is represented with a copula model. We integrate the distribution model with copulas into a Sequential Monte Carlo estimator and show how unknown model parameters can be learned through gradient-based optimization. We demonstrate our approach is effective in settings where Gaussian assumptions are clearly violated, such as environments with uncertain data association and nonlinear transition models.

Original languageEnglish
Title of host publication2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
Pages5066-5073
Number of pages8
ISBN (Electronic)9781728162126
DOIs
StatePublished - 24 Oct 2020
Event2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020 - Las Vegas, United States
Duration: 24 Oct 202024 Jan 2021

Publication series

NameIEEE International Conference on Intelligent Robots and Systems
ISSN (Print)2153-0858
ISSN (Electronic)2153-0866

Conference

Conference2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2020
Country/TerritoryUnited States
CityLas Vegas
Period24/10/2024/01/21

Fingerprint

Dive into the research topics of 'Variational filtering with copula models for SLAM'. Together they form a unique fingerprint.

Cite this