Abstract
We establish local well-posedness in the Sobolev space Hs with any s>3/2 for an integrable nonlinearly dispersive wave equation arising as a model for shallow water waves known as the Camassa-Holm equation. However, unlike the more familiar Korteweg-deVries model, we demonstrate conditions on the initial data that lead to finite time blow-up of certain solutions.
| Original language | English |
|---|---|
| Pages (from-to) | 27-63 |
| Number of pages | 37 |
| Journal | Journal of Differential Equations |
| Volume | 162 |
| Issue number | 1 |
| DOIs | |
| State | Published - 20 Mar 2000 |