Abstract
Model data-driven ontology and knowledge presentation for evolving semantic Asian social networks (OK-ASN) is a critical strategy for web of things (WoT) services. Meanwhile, Deep Neural Network (DNN)-based OK-ASN service in WoT is growing rapidly. However, most DNN-based services cannot utilize the potential of WoT fully, as heterogeneity exists in WoT. Therefore, this article proposes a novel framework called Web-based Heterogeneous Hierarchical Distributed Deep Neural Network (WH2D2N2) to deploy the DNNs for OK-ASN services on WoT, overcoming the heterogeneity. The architecture of the system and the designed Edge-Cloud-Joint execute scheme utilize heterogeneous devices to make DNN inference ubiquitous and output two types of results to meet various requirements. To bring robustness to OK-ASN services, a global scheduling is designed to arrange the workflow dynamically. The results of our experiments prove the efficiency of the execute scheme and the global scheduling in the system.
Original language | English |
---|---|
Article number | 145 |
Journal | ACM Transactions on Asian and Low-Resource Language Information Processing |
Volume | 22 |
Issue number | 5 |
DOIs | |
State | Published - 9 May 2023 |
Keywords
- Distributed inference
- heterogeneity
- ubiquitousness
- web ecology